Inorganic reaction mechanisms

Substitution reactions

Thermodynamic factors

Kinetic factors
Energy profile

Activated Complex

$E_a, \Delta H^#, \Delta S^#$

Reactants

$Y + M \rightarrow X$

Products

$M - Y + X$

Kinetics

Thermodynamics

REACTION COORDINATE
Thermodynamics

Both kinetics and thermodynamics are important in the assessment of a reaction.

This is because some thermodynamically feasible reactions may be kinetically hindered

Ligand substitution reactions will be used to illustrate these concepts:

Consider the reaction: \(Y + M \rightarrow X \rightarrow M - Y + X \)

This is a typical substitution reaction

\(Y = \) entering group

\(X = \) leaving group

The simplest illustration is a complex formation reaction:

\(\text{e.g. } [\text{Co(H}_2\text{O)}_6]^{2+} + \text{Cl}^- \rightarrow [\text{CoCl(H}_2\text{O)}_5]^+ + \text{H}_2\text{O} \)
Aquo complexes

Fundamentally metal ions dissolved in water are complexed \(\rightarrow \) Aquo complexes \(\rightarrow [M(H_2O)_x]^n+ \)

Formation of coordination compounds from an aqueous medium \(\rightarrow \) requires displacement of aquo ligands by other ligands.

\(\rightarrow \) Several geometries are possible: Typical examples of aquo compounds \(\rightarrow \) e.g. Co(II)

\[[\text{Co}(\text{H}_2\text{O})_6]^{2+} \quad \text{Octahedral} \quad [\text{Co}(\text{H}_2\text{O})_4]^{2+} \quad \text{Terahedral} \]

In reality the value of \(x \) varies \(\rightarrow \) due to extensive hydrogen bonding around the coordination sphere of \(M \)

Spectra and magnetic properties \(\rightarrow \) similar to hydrated salts of non-coordinating anions \(\rightarrow \) Co(ClO\(_4\))\(_2\).6H\(_2\)O; Co(NO\(_3\))\(_2\).6H\(_2\)O
Aquo complexes

Predominantly \([\text{Co}(\text{H}_2\text{O})_6]^{2+}\) \(\rightarrow\) octahedral

Also general for the 1st transition series \(\rightarrow\) \([\text{M}(\text{H}_2\text{O})_x]^{n+}\); \(n=+2\) or \(+3\)

Note: \(\text{Cr(II)}\); \(\text{Mn(III)}\) and \(\text{Cu(II)}\) show distortions in the octahedral geometry due to Jahn-Teller effects

2nd and 3rd TS are much less certain \(\rightarrow\) octahedral probably \(\rightarrow\) higher coordination also possible

Most \(\text{M}(\text{H}_2\text{O})_6\) exchange rapidly \(\rightarrow\) can easily be demonstrated by isotopic labeling with \(^{18}\text{O}\) enriched \(\text{H}_2\text{O}\).

Aqua ions are more or less acidic \(\rightarrow\) dissociate as follows:

\[
[M(\text{H}_2\text{O})_x]^{n+} \rightarrow [M(\text{H}_2\text{O})_{x-1}(\text{OH})]^{n-1} + \text{H}^+
\]
e.g. \([\text{Co}((\text{NH}_3)_5(\text{H}_2\text{O}))]^{3+} \rightarrow [\text{M}((\text{NH}_3)_5(\text{OH}))]^{2+} + \text{H}^+\)
Formation constants

Formation constant: the strength of a ligand relative to the strength of the solvent molecules (usually H₂O) as a ligand.

\[[\text{Fe(OH}_2\text{)}_6]^{3+}(\text{aq}) + \text{SCN}^- (\text{aq}) \rightleftharpoons [\text{Fe(SCN)(OH}_2\text{)}_5]^{2+}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \]

In dilute solutions \([\text{H}_2\text{O}] \Rightarrow \text{constant}; \]

\[K_f = \frac{[\text{Fe(SCN)(OH}_2\text{)}_5]^{2+}}{[\text{Fe(OH}_2\text{)}_6]^{3+}[\text{SCN}^-]} \]

Step-wise formation constant: formation constant of each solvent replacement stage.

\[K_{f1} ; K_{f2} \ldots \ldots \ldots K_{fn} \]

Overall formation constant: product of the step-wise formation constants.

\[\beta_n = K_{f1} K_{f2} \ldots \ldots \ldots K_{fn} \]
Successive formation constants

\[
\begin{align*}
M + L & \rightleftharpoons ML \quad K_{f1} = \frac{[ML]}{[M][L]} \\
ML + L & \rightleftharpoons ML_2 \quad K_{f2} = \frac{[ML_2]}{[ML][L]} \\
ML_{n-1} + L & \rightleftharpoons ML_n \quad K_{f_n} = \frac{[ML_n]}{[ML_{n-1}][L]} \\
M + nL & \rightleftharpoons ML_n \quad \beta_n = \frac{[ML_n]}{[M][L]^n}
\end{align*}
\]

The inverse of each \(K_f\) is the dissociation constant \(K_d\):
\[
M + L \rightleftharpoons ML \quad K_{d1} = \frac{[M][L]}{[ML]} = \frac{1}{K_{f1}}
\]
Trends in successive formation constants

The general trend \(K_{f1} > K_{f2} \)

\[\cdots \ K_{fn-1} > K_{fn} \]

This trend is a result of the sequential decrease in number of \(H_2O \) to be replaced.

Situations do arise where \(K_{fn} > K_{fn-1} \)

Generally there are 2 reasons to account for anomalies in the trends of successive \(K_f \) values:

1 \(\Rightarrow \) due to a major change in electronic structure of the complex, e.g. moving from a high spin (due to weak field \(H_2O \)) to a low spin complex.

2 \(\Rightarrow \) due to a major structural change e.g. from an octahedral to a tetrahedral or square planar geometry \(\Rightarrow \) characteristic of some halo complexes.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(K_f)</th>
<th>(\frac{K_n}{K_{n-1}})</th>
<th>(\frac{K_n}{K_{n-1}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>148</td>
<td>0.28</td>
<td>0.42</td>
</tr>
<tr>
<td>3</td>
<td>45.7</td>
<td>0.31</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>13.2</td>
<td>0.29</td>
<td>0.56</td>
</tr>
<tr>
<td>5</td>
<td>4.7</td>
<td>0.35</td>
<td>0.53</td>
</tr>
<tr>
<td>6</td>
<td>1.1</td>
<td>0.20</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Q. Consider the formation constants of the following Fe(II) complexes: Justify the observed trend?

\[\text{[Fe(bipy)(H}_2\text{O})_4]^{2+}: \quad K_{f1}: 4.2 \]
\[\text{[Fe(bipy)}_2(\text{H}_2\text{O})_2]^{2+}: \quad K_{f2}: 3.7 \]
\[\text{[Fe(bipy)}_3]^{2+}: \quad K_{f3}: 9.3 \]

\(K_{f3}: [\text{Fe(bipy)}_3]^{2+} \gg K_{f2}: [\text{Fe(bipy)}_2(\text{H}_2\text{O})_2]^{2+}: \)

The reason is due to a major electronic shift ➔

from a high spin (due to weak field \(\text{H}_2\text{O} \)) \(t_{2g}^4e_g^2 \) (LFSE \(\Delta_o = 0.4 \)) config ➔

to a low spin \(t_{2g}^6 \) config (LFSE \(\Delta_o = 2.4 \)). Large increase \(\Delta_o \).

Therefore \([\text{Fe(bipy)}_3]^{2+}\) is more stable than \([\text{Fe(bipy)}_2(\text{H}_2\text{O})_2]^{2+}\)
Q. Justify the following observation in the successive formation constants for complexes of cadmium with Br⁻:

\[
\begin{align*}
[Cd(Br)(H_2O)_5]^+ : & \quad K_{f1} : 36.3 \\
[Cd(Br)_2(H_2O)_4]^- : & \quad K_{f2} : 3.47 \\
[Cd(Br)_3(H_2O)_3]^- : & \quad K_{f3} : 1.15 \\
[Cd(Br)_4]^{2-} : & \quad K_{f4} : 2.34
\end{align*}
\]

The anomaly here is that \(K_{f4} > K_{f3} \):

The reason may not be electronic since both H₂O and Br⁻ are considered weak field ligands.

The reason is due to a major structural shift from an octahedral \([Cd(Br)_3(H_2O)_3]^-\) configuration to a tetrahedral \([Cd(Br)_4]^{2-}\) geometry with the simultaneous expulsion of 3 molecules of water from a restricted geometry.

Most halo complexes of M²⁺ have tetrahedral or square geometry.
Irving-Williams series

The Irving-Williams series summarises the relative stabilities of complexes formed by M^{2+} ions. The series reflect a combination of electrostatic effects and LFSE. For the series $\text{Ba}^{2+} < \text{Sr}^{2+} < \text{Ca}^{2+} < \text{Mg}^{2+}$ the observed trend is purely electrostatic. For the TMs in addition to electrostatic effects, the high values of K_f is due to additional stability from LFSE.

In terms of ionic radii ➔
$\text{Mn}^{2+} > \text{Fe}^{2+} > \text{Co}^{2+} > \text{Ni}^{2+} > \text{Cu}^{2+} > \text{Zn}^{2+}$.

But,

Generally for strong field ligands the observed order is:
$\text{Mn}^{2+} < \text{Fe}^{2+} < \text{Co}^{2+} < \text{Ni}^{2+} < \text{Cu}^{2+} > \text{Zn}^{2+}$.

The additional stability of d^9 Cu(II) is due to the influence of Jahn-Teller distortion ➔ results in the strong binding of the 4 planar ligands in tetragonally distorted Cu(II) complexes ➔ higher K_f values.

RECALL: Δ_o is highest at d^3 and d^8
Other thermodynamic factors

In addition to the foregone discussion the following thermodynamic factors are also important to the stability of TM complexes:

The chelate effect: this is largely an entropy effect → represents the greater stability of a complex containing a chelated polydentate ligand compared with the equivalent complex with an analogous monodentate ligands.

![Chelate Effect Diagram](image)

Steric Effect: The size of ligands are important in determining the most stable configuration → e.g. octahedral vs. tetrahedral

Electron delocalisation: This is important in complexes containing chelated ring structures. The empty ring π^* orbitals act as electron sinks that drain electrons from the full metal t_{2g} non-bonding orbitals.
Labile and non-labile complexes

The rate at which one complex inter-converts into another is determined by the height of the activation barrier between the two:

Labile complexes: A complex with a half life of the order of milliseconds; e.g. \([\text{Ni(H}_2\text{O)}_6]^{2+}\) is said to be labile

Non-labile or inert complex has half-life of the order of minutes; e.g \([\text{Co(HH}_3)_5(H_2\text{O})]^3+\)

Factors affecting lability of complexes:
Complexes with no stabilising LFSE or chelate effects are very labile
Complexes of small metal ions are less labile due to greater M-L bonds
Complexes of M(III) ions are less labile than those of M(II) ions
Complexes of d\(^3\) and low spin d\(^6\) config are non-labile ➔ high LFSE
Chelate complexes of metal ions with high LFSE (e.g. \([\text{Fe(phen)}_3]^{2+}\)) are very stable
Complexes of d\(^{10}\) ions (zero LFSE: Zn\(^{2+}\), Cd\(^{2+}\), Hg\(^{2+}\)) are generally labile
Classification of mechanisms

Associative (A);

Dissociative (D);

Interchange (Ia or Id)
Classification of mechanisms

Dissociative:
5-coordinate intermediate
D

ML_nX + Y → ML_nY + X

Energy profile for Dissociative mechanism: Intermediate has lower coordination number than reactant.

Interchange
I_d or I_a

Energy profile for Interchange mechanism: Reaction proceeds with no change in coordination number.

Associative:
7-coordinate intermediate
A

ML_nY + X → ML_nX + Y

Energy profile for Associative mechanism: Intermediate has higher coordination number than reactant.
Classification of mechanisms

No intermediate

ENERGY

ENERGY

Transition state occurs at an E maximum

Intermediate occurs at a local E minimum

Transition state occurs at an E maximum

Intermediate may be isolated

Transition state cannot be isolated
Interchange I

In most TM substitution reactions \(\rightarrow \) bond formation between \(M + Y \) happens concurrently with bond cleavage between \(M + X \) \(\rightarrow \)

Interchange mechanism:

\[
ML_nX + Y \quad \longrightarrow \quad Y \ldots \ldots ML_n \ldots \ldots X \quad \longrightarrow \quad ML_nY + X
\]

For an **interchange mechanism** \(\rightarrow \) there is **no intermediate formed**, but **various TS may be possible:**

Hence there are 2 types of I:

- **Dissociative Id**: bond breakage dominates over formation and
- **Associative Ia**: bond formation dominates over breakage

It is often difficult to distinguish between:

- A and Ia
- D and Id
- Ia and Id
Substitution reactions in square planar complexes

- Referring to complexes of d^8 ion TM
- Under a large crystal field:

 \[
 \text{Rh(I) Ir(I) Pt(II) Pd(II) Au(III)}
 \]
Steric Effects

Remember 4-coord. Ni(II) can be tetrahedral or sq planar (why?)

Nucleophilic subst. in sq. planar complexes ⇒ usually A or Ia ⇒
the rate of the reaction is dependent on the nature of the entering
group Y

But steric crowding at the reaction centre by bulky groups ⇒
usually inhibits A or Ia reactions ⇒ results in D or Id mechanism

k values for $\text{cis-}[\text{PtCl}_2\text{L(PEt}_3\text{)}_2]\ + \text{H}_2\text{O} \rightarrow \text{cis-}[\text{Pt(H}_2\text{O)}\text{L(PEt}_3\text{)}_2]$

$L = \begin{array}{ccc}
\text{pyridine} & \text{2-Mepy} & \text{2,6-diMepy} \\
8 \times 10^{-2} & 2 \times 10^{-4} & 1 \times 10^{-6}
\end{array}$

The rate ↓ with ↑ in steric bulk around N→M bond
⇒ The Me groups hinder the attack by H$_2$O
Stereochemistry

Substitution reactions at square complexes are stereospecific ➔ the original geometry of the complex is preserved:

- cis reactants lead to cis products
- trans reactants lead to trans products
- most of these are 16 electron complexes ➔ useful in catalysis ➔ oxidative addition-reductive elimination (16 e↔18 e) chemistry
The kinetic *trans*-effect and thermodynamic *trans*-influence

Since the substitution reactions of sq. planar TM complexes are usually A or Ia, what factors determine the nature of the TS and

Why a 5 coordinate (trigonal bipyramidal or square pyramidal) TS?

Which ligand leaves is determined by the ligand trans to it ➔ *trans* influence ➔ *trans* effect

σ-donor ligands ➔ Ligands capable of contributing more electron density to the shared orbital between itself and the *trans* ligand, thereby weakening the bond to the leaving group ➔ *trans* influence

π-acceptor ligands ➔ drain away electrons in A or Ia substitution reactions ➔ TS characterised by high electron density at the metal center due to a 5-coordinate intermediate ➔ *trans* effect
The kinetic *trans*-effect and thermodynamic *trans*-influence

trans influence and *trans*-effect are related \(\Rightarrow\) weakening the bond to the *trans*-ligand and increasing the rate of substitution,

Note: there is NO close correlation between the relative magnitudes of the two phenomena

Why a 5 coordinate (trigonal bipyramidal or square pyramidal) TS?

The leaving group (X), the entering group (Y) and the *trans* ligand L₃ all lie in the same plane. **The TS is stabilised if L₃ is a good π acceptor** ligand such as CO. The three are able to communicate electronically via the π-bonding orbitals.

Remember the influence of π bonding on the **crystal field splitting** \(\Delta\)
The kinetic \textit{trans}-effect and thermodynamic \textit{trans}-influence

- **Peyrane's Reaction (1845)**

\[
2K^+ \left[\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{Pt} \\ \text{Cl} \\ \text{Cl} \end{array} \right]^{-2} \rightarrow \text{NH}_3 \rightarrow \left[\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{Pt} \\ \text{NH}_3 \\ \text{Cl} \end{array} \right]^{-} \rightarrow \text{NH}_3 \rightarrow \left[\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{Pt} \\ \text{NH}_3 \\ \text{Cl} \end{array} \right]^{-}
\]

- **Jorgensen's Reaction (1886)**

\[
\left[\begin{array}{c} \text{H}_3\text{N} \\ \text{H}_3\text{N} \\ \text{Pt} \\ \text{NH}_3 \\ \text{NH}_3 \end{array} \right]^{+2} \rightarrow \text{HCl} \rightarrow \left[\begin{array}{c} \text{Cl} \\ \text{H}_3\text{N} \\ \text{Pt} \\ \text{NH}_3 \\ \text{NH}_3 \end{array} \right]^{+} \rightarrow \text{HCl} \rightarrow \left[\begin{array}{c} \text{Cl} \\ \text{H}_3\text{N} \\ \text{Pt} \\ \text{NH}_3 \\ \text{Cl} \end{array} \right]
\]

The *trans* effect

The trans effect states that the bond holding a group *trans* to an electronegative group is weakened. This *trans* group is the first to be removed in a substitution reaction.

Chloride is a better trans-labilizer than ammonia or pyridine.

Ethylene is a better trans-labilizer than chloride.
Kinetic Studies to determine *trans*-effect of ligands

![Chemical structure](image)

<table>
<thead>
<tr>
<th>L</th>
<th>k (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_4, \text{CO})</td>
<td>too fast</td>
</tr>
<tr>
<td>(\text{P(OMe)}_3)</td>
<td>10.3</td>
</tr>
<tr>
<td>(\text{PEt}_3)</td>
<td>6.6</td>
</tr>
<tr>
<td>(\text{PPh}_3)</td>
<td>3.1</td>
</tr>
<tr>
<td>(\text{Me}_2\text{SO})</td>
<td>0.0082</td>
</tr>
<tr>
<td>(\text{Et}_2\text{S})</td>
<td>0.0024</td>
</tr>
<tr>
<td>(\text{Me}_2\text{S})</td>
<td>0.0015</td>
</tr>
<tr>
<td>(\text{NH}_3)</td>
<td>(6.3\times10^{-6})</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>(8.0\times10^{-8})</td>
</tr>
</tbody>
</table>
Trans-influence from x-ray crystallography
Trans-influence from vibrational spectroscopy

<table>
<thead>
<tr>
<th>L</th>
<th>ν Pt-Cl (cm⁻¹)</th>
<th>L</th>
<th>ν Pt-Cl (cm⁻¹)</th>
<th>L</th>
<th>ν Pd-Cl (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>322</td>
<td>py</td>
<td>336</td>
<td>py</td>
<td>342</td>
</tr>
<tr>
<td>SMe₂</td>
<td>310</td>
<td>SMé₂</td>
<td>336</td>
<td>Cl</td>
<td>330</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>309</td>
<td>COD</td>
<td>327</td>
<td>NH₃</td>
<td>327</td>
</tr>
<tr>
<td>SEt₂</td>
<td>307</td>
<td>SEt₂</td>
<td>324</td>
<td>EtSCH₂CH₂SEt</td>
<td>323</td>
</tr>
<tr>
<td>PPh₃</td>
<td>279</td>
<td>NH₃</td>
<td>321</td>
<td>H₂NCH₂CH₂NH₂</td>
<td>307</td>
</tr>
<tr>
<td>PEt₃</td>
<td>271</td>
<td>PPh₃</td>
<td>305</td>
<td>PEt₃</td>
<td>297</td>
</tr>
</tbody>
</table>

- Ligands with high trans-influence have high trans-effect.
- Exceptions to this rule include CO, C₂H₄, and DMSO.
- Frequency order for Rh(III)-Cl: H⁻ > PR₃ > Me⁻ > CO > I⁻ > Br⁻ > Cl⁻.
- For octahedral complexes, trans-influence parallels trans-effect.
Trans effect vs. trans influence

- The trans effect is the influence of a ligand (L) on the rate of substitution of the ligand trans to it (X). It is a kinetic effect (ground and transition states).

\[
\text{H}^- = \text{CH}_3^- = \text{CN}^- = \text{C}_2\text{H}_4 = \text{CO} \gg \text{PR}_3 = \text{SR}_2 > \text{NO}_2 = \text{SCN}^- = \text{I}^- > \text{Br}^- > \text{Cl}^- > \text{py} > \text{RNH}_2 = \text{NH}_3 > \text{OH}^- > \text{H}_2\text{O}
\]

- The trans influence is the extent to which a ligand (L) weakens the bond that is trans to itself. It is a thermodynamic effect (ground state). Apply primarily to the leaving group.

\[
\text{R}_3\text{Si}^- = \text{R}^- = \text{H}^- > \text{PEt}_3 > \text{PMe}_2\text{Ph} > \text{PPh}_3 > \text{P(OPh)}_3 = \text{CN}^- > \text{SEt}_2 > \text{Et}_2\text{NH} > \text{py} > \text{OSMe}_2 = \text{C}_2\text{H}_4 = \text{CO} > \text{Cl}^-
\]

- The trans effect is often the manifestation of the trans influence although there are some ligands (DMSO, CO, C₂H₄) which do not show significant trans-influences yet show strong effects.
Theory on *trans* influence

- Grinberg Polarization Theory (1935): M→L and then L→M induced dipole results in repulsion of electrons in X ➔ weakening of M-X bond.

- Chatt/Orgel theory of back-bonding: Stabilisation of a 5 coordinate (trigonal bipyramidal) activated complex.
Q. Does back-bonding generally indicate stronger *trans* effect?

YES

- The trend holds for olefins, CO, and DMSO...

- Phosphorus donors...

- And sulfur donors to a lesser extent...

But, metal alkyl and metal hydrides have large trans effects and no back-bonding.

\[\text{H}_2\text{PtCl}_2 \rightarrow \text{H}_2\text{PtI}_2 \]

\[\left[\begin{array}{c} \text{NH}_3 \\ \text{Rh} \\ \text{NH}_3 \\ \text{H}_3\text{N} \\ \text{NH}_3 \end{array} \right]^{2+} \rightarrow \left[\begin{array}{c} \text{NH}_3 \\ \text{Rh} \\ \text{OH}_2 \\ \text{H}_3\text{N} \\ \text{NH}_3 \end{array} \right]^{2+} \]

Rates of aquation: H > Et > CF₂CF₂H >> Cl

Q. Given $\text{Pt(NH}_3\text{)}_4^{2+}$, $[\text{PtCl}_4]^{-2}$, HCl and NH$_3$ suggest synthetic routes to

a) cis-$[\text{PtCl}_2(\text{NH}_3)_2]$
b) trans-$[\text{PtCl}_2(\text{NH}_3)_2]$